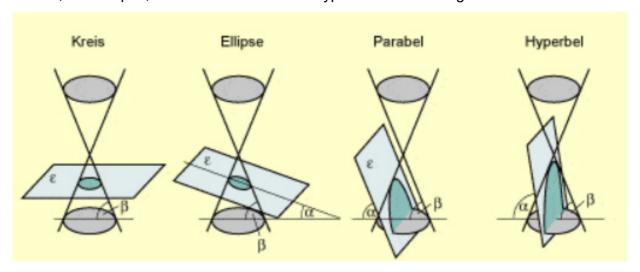
Ausgewählte Kapitel der Schulmathematik in den Sekundarstufen

Text 14 zur Vorlesung von Hans-Ulrich Brandenburger

Bemerkungen zu den Kegelschnitten

Schneidet man mit einer Ebene einen Kegel bzw. einen Doppelkegel, so erhält man einen Kreis, eine Ellipse, eine Parabel oder eine Hyperbel als Schnittfigur.



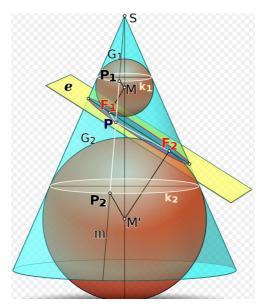
Der **Kreis** ist der geometrische Ort aller Punkte, die zu einem fest gewählten Punkt, dem Mittelpunkt, einen konstanten Abstand haben.

Die **Ellipse** ist der geometrische Ort aller Punkte, die zu zwei fest gewählten Punkten, den Brennpunkten, eine konstante Abstandssumme haben.

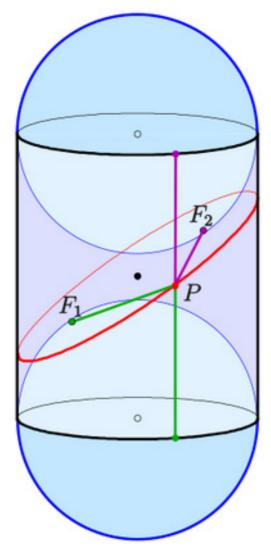
Die **Parabel** ist der geometrische Ort aller Punkte, die zu einem fest gewählten Punkt, dem Brennpunkt, und einer fest gewählten Geraden, der Leitgeraden, denselben Abstand haben.

Die **Hyperbel** ist der geometrische Ort aller Punkte, die zu zwei fest gewählten Punkten, den Brennpunkten, eine konstante Abstandsdifferenz haben.

Mithilfe der *Dandelinschen Kugeln* lassen sich die geometrischen Eigenschaften der Kegelschnitte herleiten.



Ein Zylinderschnitt (Ellipse) zeigt beispielhaft die Vorgehensweise:



Ableitungen von sinh(x) und cosh(x)

Für die hyperbolischen Funktionen $\sinh(x) = \frac{e^x - e^{-x}}{2}$ und $\cosh(x) = \frac{e^x + e^{-x}}{2}$ gilt

$$\frac{d}{dx}\sinh x = \cosh x$$
 und $\frac{d}{dx}\cosh x = \sinh x$,

denn

$$\frac{d}{dx}\sinh x = \frac{d}{dx}\frac{e^x - e^{-x}}{2} = \frac{1}{2}\left(\frac{de^x}{dx} - \frac{de^{-x}}{dx}\right) = \frac{1}{2}\left(e^x - \frac{de^{-x}}{d(-x)} \cdot \frac{d(-x)}{dx}\right)$$
$$= \frac{1}{2}(e^x - e^{-x} \cdot (-1)) = \frac{1}{2}(e^x + e^{-x}) = \cosh x$$

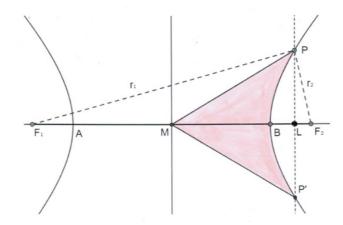
und weiter folgt mit der Lösung

$$\cosh(x) + \sinh(x) = e^x$$

von der Aufgabe 13.1a

$$\frac{d}{dx}\cosh x = \frac{d(e^x - \sinh x)}{dx} = \frac{de^x}{dx} - \frac{d\sinh x}{dx} = e^x - \cosh(x) = \sinh x$$

Bestimmung des Flächeninhaltes von ${\mathcal F}$



Da die Flächenanteile von \mathcal{F} über und unterhalb der x-Achse gleich groß sind, reicht es, den Anteil über der x-Achse zu bestimmen und das Ergebnis dann zu verdoppeln. Also gilt mit dem Flächeninhalt F_{MLP} des Dreiecks MLP

$$\mathcal{F} = 2\left(F_{MLP} - \int_{1}^{x} \sqrt{t^2 - 1} \, dt\right)$$

$$= 2\left(\frac{x\sqrt{x^2 - 1}}{2} - \int_{1}^{x} \sqrt{t^2 - 1} \, dt\right) = x\sqrt{x^2 - 1} - 2\int_{1}^{x} \sqrt{t^2 - 1} \, dt$$

Das Integral $\int_1^x \sqrt{t^2-1} \, dt$ kann man mithilfe der Substitution $t=\cosh z$ und der Folgerung $\frac{dt}{dz}=\sinh z$ bzw. $dt=\sinh(z)dz$ umformen zu

$$\int_{1}^{x} \sqrt{t^2 - 1} dt = \int_{\operatorname{arccosh} 1}^{\operatorname{arccosh} 2} \sqrt{\cosh^2 z - 1} \sinh(z) dz = \int_{\operatorname{arccosh} 1}^{\operatorname{arccosh} 2} \sinh^2(z) dz$$

Der letzte Gleichungsschritt folgt mit dem hyperbolischen Pythagoras. Nun nutzen wir die *Partielle Integration*

$$\int uv' = uv - \int u'v$$

um das Integral $\int_{\mathrm{arccosh}\,1}^{\mathrm{arccosh}\,x} \sinh^2(z) dz$ zu erfassen. Es gilt unabhängig von den Integrationsgrenzen

$$\int \sinh^2(z)dz = \sinh(z)\cosh(z) - \int \cos^2(z)dz$$

$$= \sinh(z)\cosh(z) - \int (1 + \sinh^2(z))dz$$

$$= \sinh(z)\cosh(z) - \int 1dz - \int \sinh^2(z)dz$$

$$= \sinh(z)\cosh(z) - z - \int \sinh^2(z)dz$$

Schafft man beide Integrale auf die linke Gleichungsseite und teilt dann mit 2 so folgt

$$\int \sinh^2(z)dz = \frac{1}{2}(\sinh(z)\cosh(z) - z) + C$$

bzw.

$$\int \sinh^2(z)dz = \frac{1}{2} \left(\sqrt{\cosh^2 z - 1} \cosh(z) - z \right) + C$$

Ersetzen wir nun wieder $\cosh(z)$ durch t, so folgt

$$\int_{1}^{x} \sqrt{t^{2} - 1} dt = \int_{\operatorname{arccosh} x}^{\operatorname{arccosh} x} \sinh^{2}(z) dz$$

$$= \left[\frac{1}{2} \left(\sqrt{t^{2} - 1} \cdot t - \operatorname{arccosh} t \right) \right]_{1}^{x}$$

$$= \frac{1}{2} \left(\sqrt{x^{2} - 1} \cdot x - \operatorname{arccosh} x \right) - \frac{1}{2} \left(\sqrt{1^{2} - 1} \cdot 1 - \operatorname{arccosh} 1 \right)$$

$$= \frac{1}{2} \left(\sqrt{x^{2} - 1} \cdot x - \operatorname{arccosh} x \right)$$

Für den Flächeninhalt \mathcal{F} gilt damit

$$\mathcal{F} = x\sqrt{x^2 - 1} - 2\int_1^x \sqrt{t^2 - 1} dt$$

$$= \sqrt{x^2 - 1} \cdot x - 2 \cdot \frac{1}{2} \left(\sqrt{x^2 - 1} \cdot x - \operatorname{arccosh} x \right)$$

$$= \operatorname{arccosh} x = \psi$$
q.e.d.

Bemerkungen: Die Bemerkungen zu den Kegelschnitten sollten Sie wiedergeben können. Erklären Sie auch, warum ein Zylinderschnitt eine Ellipse sein kann. Der Nachweis, dass das Argument ψ von $\cosh \psi$ gleich dem Flächeninhalt von $\mathcal F$ ist, wird nicht verlangt. Der Ansatz sollte Ihnen aber klar sein.

Literatur:

- [17] Heuser, Harro, Lehrbuch der Analysis Teil 1, B. G. Teubner Stuttgart 1993.
- [19] Bronstein-Semendjajew, Taschenbuch der Mathematik 7. Auflage, Teubner Verlagsgesellschaft Leipzig 1969
- [20] Scheid, Harald, Elemente der Geometrie 3. Auflage, Spektrum Akademischer Verlag Heidelberg-Berlin, 2001
- [21] Bartsch, Hans-Jochen, Taschenbuch Mathematischer Formeln, 19. Auflage, Fachbuchverlag Leipzig, 2001